Free-energy landscape of a hyperstable RNA tetraloop.

نویسندگان

  • Jacob C Miner
  • Alan A Chen
  • Angel E García
چکیده

We report the characterization of the energy landscape and the folding/unfolding thermodynamics of a hyperstable RNA tetraloop obtained through high-performance molecular dynamics simulations at microsecond timescales. Sampling of the configurational landscape is conducted using temperature replica exchange molecular dynamics over three isochores at high, ambient, and negative pressures to determine the thermodynamic stability and the free-energy landscape of the tetraloop. The simulations reveal reversible folding/unfolding transitions of the tetraloop into the canonical A-RNA conformation and the presence of two alternative configurations, including a left-handed Z-RNA conformation and a compact purine Triplet. Increasing hydrostatic pressure shows a stabilizing effect on the A-RNA conformation and a destabilization of the left-handed Z-RNA. Our results provide a comprehensive description of the folded free-energy landscape of a hyperstable RNA tetraloop and highlight the significant advances of all-atom molecular dynamics in describing the unbiased folding of a simple RNA secondary structure motif.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous NMR characterisation of multiple minima in the free energy landscape of an RNA UUCG tetraloop.

RNA molecules in solution tend to undergo structural fluctuations of relatively large amplitude and to populate a range of different conformations some of which with low populations. It is still very challenging, however, to characterise the structures of these low populated states and to understand their functional roles. In the present study, we address this problem by using NMR residual dipo...

متن کامل

Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme

A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structu...

متن کامل

Exploring the electrostatic energy landscape for tetraloop-receptor docking.

It has long been appreciated that Mg(2+) is essential for the stabilization of RNA tertiary structure. However, the problem of quantitative prediction for the ion effect in tertiary structure folding remains. By using the virtual bond RNA folding model (Vfold) to generate RNA conformations and the newly improved tightly bound ion model (TBI) to treat ion-RNA interactions, we investigate Mg(2+)-...

متن کامل

The GAAA tetraloop-receptor interaction contributes differentially to folding thermodynamics and kinetics for the P4-P6 RNA domain.

Tetraloops with the generic sequence GNRA are commonly found in RNA secondary structure, and interactions of such tetraloops with "receptors" elsewhere in RNA play important roles in RNA structure and folding. However, the contributions of tetraloop-receptor interactions specifically to the kinetics of RNA tertiary folding, rather than the thermodynamics of maintaining tertiary structure once f...

متن کامل

Predicting ion-nucleic acid interactions by energy landscape-guided sampling.

The recently developed Tightly Bound Ion (TBI) model offers improved predictions for ion effect in nucleic acid systems by accounting for ion correlation and fluctuation effects. However, further application of the model to larger systems is limited by the low computational efficiency of the model. Here, we develop a new computational efficient TBI model using free energy landscape-guided sampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 24  شماره 

صفحات  -

تاریخ انتشار 2016